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In this work, for the first time, generalized Faber series for functions in the
Bergman space A2(G) on finite regions with a quasiconformal boundary are
defined, and their convergence on compact subsets of G and with respect to the
norm on A2(G) is investigated. Finally, if Sn ( f, z) is the n th partial sum of the
generalized Faber series of f # A2(G), the discrepancy & f &Sn ( f, } )&A2(G) is
evaluated by En ( f, G), the best approximation to f by polynomials of degree n.
� 1996 Academic Press, Inc.

1. INTRODUCTION AND STATEMENT OF PROBLEM

Let G be a finite region with 0 # G bounded by a quasiconformal curve
1. We recall that 1 is called a quasiconformal curve if there exists a
quasiconformal homeomorphism of the complex plane onto itself that
maps a circle onto 1. The set

A2(G) :={ f : f is analytic in G and ||
G

| f (z)| 2 d_z<+�=
is called the Bergman space on G, where d_z denotes the Lebesque measure
in the complex plane. It is well known that A2(G) is a Hilbert space with
the inner product

( f, g) :=||
G

f (z) g(z) d_z ,

and the set of polynomials are dense in A2(G) with respect to the norm
& f &A2(G) :=(( f, f ) )1�2, see [8: Ch. I] and [5: p. 420]. Also, for n=1, 2, ...,
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if the degree of the best approximation to f by polynomials of degree �n
is defined by the formula

En ( f, G) :=Inf[& f &P&A2(G) : P(z) is a polynomial of degree �n],

there exists a polynomial Pn*(z), of degree �n, such that En( f, G) :=
& f &Pn*&A2(G) . Pn*(z) is called the best approximant polynomial to f # A2(G).

Let U be the open unit disc and w=.(z) the conformal mapping of CG�
onto CU� with normalization .(�)=� and limz � � (1�z) .(z)>0, where
CG� and CU� are the complements of G� and U� in the extended complex plane
respectively. We denote the inverse of .(z) by 9(w). If Fm (z) is the m th Faber
polynomial for G� , then it is known that for every (z, w) # G� _CU�

9$(w)
9(w)&z

= :
�

m=0

Fm (z)
wm+1

and the series converges uniformly and absolutely on compact subsets of
G� _CU� . From this, we get

9$(w)
(9(w)&z)2= :

�

m=1

F$m (z)
wm+1 , (z, w) # G� _CU� , (1)

where the series converges absolutely and uniformly on compact subsets of
G� _CU� . More information for Faber polynomials and Faber expansions
can be found in [8] and [11].

In this work, we define a generalized Faber series of a function f # A2(G)
to be of the form ��

m=1 am ( f ) F$m (z), and we show that it converges
uniformly on compact subsets of G. Furthermore, if Sn ( f, z) :=
�n+1

m=1 am ( f ) F$m (z) is the n th partial sum of a generalized Faber series of
f # A2(G), then we give an estimation of the discrepancy & f &Sn ( f, } )&A2(G)

by means of En ( f, G). Also, if a series ��
m=1 am F$m (z) is convergent to

f # A2(G) with respect to the norm & &A2(G) , we show that the am are the
generalized Faber coefficients am ( f ) of f. In [9], similar problems were
studied by D. M. Israfilov in A(G� ), where A(G� ) denotes the class of func-
tions which are analytic in G and continuous in G� .

2. DEFINITIONS AND SOME AUXILIARY RESULTS

In [4], V. I. Belyi gave the following integral representation for the
functions f # A(G� ) as

f (z)=&
1
? ||

CG�

( f b y)(`)
(`&z)2 y �̀ (`) d_` , z # G, (2)
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and he studied the approximation by polynomials in A(G� ). Here y(z) is a
K-quasiconformal reflection with respect to 1, i.e., a sense-reversing
K-quasiconformal involution of the extended complex plane taking G into
CG� and keeping every point of 1 fixed, with y(0)=� and y(�)=0. Such
a mapping of the plane does exist [10]. It follows from Ahlfors' lemma [1:
p. 80] that the reflection y(z) may always be chosen to be differentiable
everywhere, except possibly on the points of 1 _ [0]. In this case,
I. M. Batchaev generalized the integral representation above to Lebesque
integrable and analytic functions, and so to functions f # A2(G) [3]. The
analog of the integral representation (2) for unbounded domains with
boundary passing through � was first proved by L. Bers [6].

Quasiconformal mappings and quasiconformal reflections with respect to
1 are examined in [1] and [10] in great detail. From now on, the reflec-
tion y(z) will be a differentiable K-quasiconformal reflection with respect
to 1.

Let f # A2(G). Substituting `=9(w) in (2), we get

f (z)=&
1
? ||

CU�
f (y(9(w))) 9$(w) y �̀ (9(w))

9$(w)
(9(w)&z)2 d_w , z # G, (3)

Thus, if we consider (1) and (3), and define coefficients am ( f ), by

am ( f ) :=&
1
? ||

CU�

f (y(9(w))) 9$(w)
wm+1 y �̀ (9(w)) d_, m=1, 2, ... (4)

then we can associate a formal series ��
m=1 am ( f ) F$m (z) with the function

f # A2(G), i.e.,

f (z)t :
�

m=1

am ( f ) F$m (z). (5)

We call this formal series a generalized Faber series of f # A2(G), and the
coefficients am ( f ) are called generalized Faber coefficients of f.

Lemma 2.1. Let [Fm (z)] be the Faber polynomials for G� . Then

:
n

m=1

&F$m&2
A2(G)

m
�n?.

Proof. Let Sm (G) be the area of the image of G under Fm in the
Riemann surface of Fm . Since Fm (9(w))=wm+��

v=1 mbmv w&v, |w|>1,
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[7: p. 43] where the bmv are the Grunsky coefficients, by means of a
theorem due to N. A. Lebedev and I. M. Millin in [11: p. 213] we have

Sm (G)=? \m& :
�

v=1

vm2 |bmv|
2+�m?. (6)

On the other hand

Sm (G)=||
G

|F$m (z)| 2 d_z=&F$m&2
A2(G) . (7)

From (6) and (7), it follows that

:
n

m=1

&F$m&2
A2(G)

m
�n?.

Let us emphasize that we can, in general, not reduce n? in the inequality
above. In fact, if we consider the unit disc U, then Fm (z)=zm and
�n

m=1 &F$m&2
A2(U)�m=n?.

Remark. Using a completely similar method, it can be proved that this
lemma is true for any continuum E whose complement is connected.

Lemma 2.2. The series ��
m=1 |F$m (z)| 2�(m+1) is convergent uniformly

on compact subsets of G.

Proof. Let z be a fixed point in G. Then the power series
��

m=1 (F$m (z)�(m+1)) wm+1 defines an analytic function A(z, w) in U, i.e.,

A(z, w) := :
�

m=1

F$m (z)
m+1

wm+1, w # U, (8)

Thus, by taking derivative of (8) with respect to w and considering (1)
we get

A$(z, w)= :
�

m=1

F$m (z)wm=
9$(1�w)

(9(1�w)&z)2 w
, w # U, (9)

Let 0<r<1. Since ��
m=1 F$m (z) wm is convergent uniformly and absolutely

on the closed disc D� (0, r), it follows that

||
D� (0, r)

|A$(z, w)| 2 d_w=? :
�

m=1

|F$m (z)| 2

m+1
r2m+2. (10)
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(9) and (10) show that

? :
�

m=1

|F$m (z)| 2

m+1
r2m+2=||

D� (0, r) }
9$(1�w)

(9(1�w)&z)2 w }
2

d_w . (11)

Since

lim
r � 1& ||

D� (0, r) }
9$(1�w)

(9(1�w)&z)2 w }
2

d_w=||
U } 9$(1�w)

(9(1�w)&z)2 w }
2

d_w ,

and

||
U } 9$(1�w)

(9(1�w)&z)2 w }
2

d_w<+�

we get

? :
�

m=1

|F$m (z)|2

m+1
=||

U } 9$(1�w)
(9(1�w)&z)2 w }

2

d_w .

On the other hand, it can be easily proved that

||
U } 9$(1�w)

(9(1�w)&z)2 w }
2

d_w

is continuous in G. So, by Dini's theorem the series ��
m=1 |F$m (z)| 2�(m+1)

is convergent uniformly on compact subsets of G.

Lemma 2.3. If f # A2(G) and y(`) is a differentiable K-quasiconformal
reflection with respect to 1, then

||
CG�

|( f b y)(`)| 2 | y �̀ (`)| 2 d_`�
& f &2

A2(G)

1&k2 ,

where k :=(K&1)�(K+1).

Proof. Since y� (`) is a differentiable K-quasiconformal mapping of the
extended complex plane onto itself, we have | y� �̀ | � | y� ` |�k and
| y� ` | 2&| y� �̀ |

2>0. Also, it is known that | y� �̀ |=| y` | and | y� ` |= | y �̀ | . There-
fore, since | y` | � | y �̀ |�k and | y �̀ |

2&| y` | 2>0, we get
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||
CG�

|( f b y)(`)| 2 | y �̀ (`)| 2 d_`=||
CG�

|( f b y)(`)| 2 (1&(| y` | � | y �̀ | )
2)&1

_(| y �̀ |
2&| y` | 2) d_`

||
CG�

|( f b y)(`)| 2 | y �̀ (`)| 2 d_`�
1

1&k2 ||
CG�

|( f b y)(`)| 2 ( | y �̀ |
2&| y` | 2) d_` .

Since the Jacobian of y(`) is ( | y` | 2&| y �̀ |
2), if we substitute z for y(`) on

the right side of the inequality above we get

||
CG�

|( f b y)(`)| 2 | y �̀ (`)|2 d_`�
& f &2

A2(G)

1&k2 .

3. MAIN RESULTS

Theorem 3.1. Let f # A2(G). If ��
m=1 am ( f ) F$m (z) is a generalized

Faber series of f, then the series ��
m=1 am ( f ) F$m (z) converges uniformly to

f on compact subsets of G.

Proof. Let M be a compact subset of G and y(z) a differentiable
K-quasiconformal reflection with respect to 1. Since for z # M

f (z)=&
1
? ||

CG�

( f b y)(`)
(`&z)2 y �̀ (`) d_`

=&
1
? ||

CU�
f (y(9(w))) 9$(w) y �̀ (9(w))

9$(w)
(9(w)&z)2 d_w

and

am ( f )=&
1
? ||

CU�

f (y(9(w))) 9$(w)
wm+1 y �̀ (9(w)) d_w , m=1, 2, ...

we obtain by means of Ho� lder's inequality and Lemma 2.3

} f (z)& :
n

m=1

am ( f ) F$m (z) }
�

& f &A2(G)

? - 1&k2 \||CU� }
9$(w)

(9(w)&z)2& :
n

m=1

F$m(z)
wm+1 }

2

d_w+
1�2

(12)

for every z # M.
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Let 1<r<R<+�. In view of (1)

||
r<|w|<R } 9$(w)

(9(w)&z)2& :
n

m=1

F$m (z)
wm+1 }

2

d_w=||
r<|w|<R } :

�

m=n+1

F$m(z)
wm+1 }

2

d_w

=? :
�

m=n+1

1
m \ 1

r2m&
1

R2m+ |F$m(z)|2

�4? :
�

m=n+1

|F$m (z)| 2

m+1
,

and by letting r � 1+ and R � +� we get

||
CU� }

9$(w)
(9(w)&z)2& :

n

m=1

F$m (z)
wm+1 }

2

d_w�4? :
�

m=n+1

|F$m (z)| 2

m+1
. (13)

Therefore, by (12), (13) and Lemma 2.2, we conclude that
��

m=1 am ( f ) F$m (z) converges uniformly to f on M. This completes the
proof.

Corollary 3.1. If Pn (z) is a polynomial of degree n and am (Pn) are its
generalized Faber coefficients, then am (Pn)=0 for all m�n+2 and
Pn (z)=�n+1

m=1 am (Pn) F$m (z).

Proof. Let z # G. By Theorem 3.1, we have Pn (z)=��
m=1 am (Pn) F$m (z).

It is obvious that Pn (z) can be written in the form Pn (z)=�n+1
v=1 Av F$v (z).

Let y(z) be a differentiable K-quasiconformal reflection relative to 1. Since
y(z) is fixed on 1, we get by Green's formulae

am (Pn)=&
1
? ||

CU�

Pn (y(9(w))) 9� � (w)
wm+1 y �̀ (9(w)) d_w

= :
n+1

v=1

&
Av

? ||
CU�

F $v(y(9(w))) 9� $(w)
wm+1 y �̀ (9(w)) d_w

= :
n+1

v=1

&
Av

? ||
CU�

�
�w� \

Fv (y(9(w)))
wm+1 + d_w

= :
n+1

v=1

Av

2?i ||w|=1

Fv (9(w))
wm+1 dw. (14)
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Since

1
2?i | |w|=1

Fv (9(w))
wm+1 dw={1, if v=m,

0, if v{m,
(15)

see [8: p. 43], it follows that am (Pn)=Am , for m=1, ..., n+1, and
am (Pn)=0 for all m�n+2. So Pn (z)=�n+1

m=1 am (Pn) F$m (z).

Theorem 3.2. Let [am] be a complex number sequence. If the series
��

m=1 am F$m (z) converges to a function f # A2(G) in the norm & &A2(G) , then
the am are the generalized Faber coefficients of f.

Proof. Let y(z) be a differentiable K-quasiconformal reflection relative
to 1, and Sn (z) :=�n+1

m=1 am F$m (z) be the n th partial sum of
��

m=1 am F$m (z). Using (15), it can be shown that

lim
n � �

1
? ||

CU�

Sn (y(9(w))) 9� $(w)
wm+1 y �̀ (9(w)) d_w=am , m=1, 2, ..., (16)

So, if m and n are natural numbers, we get by using Ho� lder's inequality
and Lemma 2.3

|am ( f )&am|

�
1
? } ||CU�

[ f (y(9(w)))&Sn (y(9(w)))] 9� $(w)
wm+1 y �̀ (9(w)) d_w }

+ }&1
? ||

CU�

Sn (y(9(w))) 9� $(w)
wm+1 y �̀ (9(w)) d_w&am }

�
1
? \||CU�

d_w

|w| 2m+2+
1�2

_\||CU�
| f (y(9(w)))&Sn (y(9(w)))| 2}|9$(w)| 2 |y �̀ (9(w))| 2 d_w+

1�2

+ }&1
? ||

CU�

Sn (y(9(w))) 9� $(w)
wm+1 y �̀ (9(w)) d_w&am }

�
1

- m? \||CG�
|(( f &Sn) b y)(`)| 2 |y �̀ (`)| 2 d_`+

1�2

+ }&1
? ||

CU�

Sn (y(9(w))) 9� $(w)
wm+1 y �̀ (9(w)) d_w&am }
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�
& f &Sn&A2(G)

- m?(1&k2)

+ }&1
? ||

CU�

Sn (y(9(w))) 9� $(w)
wm+1 y �̀ (9(w)) d_w&am } . (17)

Since limn � � & f &Sn&A2(G)=0, (16) and (17) show that am ( f )=am , and
so the proof is completed.

Under the assumption of the above theorem, it is seen that the
generalized Faber coefficients of the limit function are independent of the
choice of the differentiable K-quasiconformal reflection.

Theorem 3.3. If f # A2(G) and Sn( f, z)=�n+1
m=1 am ( f ) F$m (z) is the nth

partial sum of its generalized Faber series ��
m=1 am ( f ) F$m (z), then

& f &Sn ( f, } )&A2(G)�- 6n�(1&k2) En ( f, G)

for all natural numbers n.

Proof. Let y(z) be a differentiable K-quasiconformal reflection with
respect to 1, and Pn*(z) the best approximant polynomial to f # A2(G) in
the norm & &A2(G) . By means of Ho� lder's inequality, Lemma 2.3 and
Corollary 3.1 we obtain

| f (z)&Sn ( f, z)|

�| f (z)&Pn*(z)|+|Pn*(z)&Sn ( f, z)|

�| f (z)&Pn*(z)|+ } :
n+1

m=1

(am (Pn*)&am ( f )) F$m (z) }
�| f (z)&Pn*(z)|

+
1
? } ||CU�

( f b y&Pn* b y)(9(w)) 9$(w) y �̀ (9(w)) :
n+1

m=1

F$m (z)
wm+1 d_w }

�
1
? \||CU�

|( f b y&Pn* b y)(9(w))| 2 |9$(w)| 2 |y �̀ |
2 d_w+

1�2

_\||CU� } :
n+1

m=1

Fm (z)
wm+1 }

2

d_w+
1�2

+| f (z)&Pn*(z)|
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�| f (z)&Pn*(z)|+
1
? \||CG�

|( f b y&Pn* b y)(`)|2 |y �̀ (`)| 2 d_`+
1�2

_\? :
n+1

m=1

|F$m (z)| 2

m +
1�2

�| f (z)&Pn*(z)|+
1

- ?(1&k2)
& f &Pn*&A2(G) \ :

n+1

m=1

|F$m (z)|2

m +
1�2

�| f (z)&Pn*(z)|+
1

- ?(1&k2)
En ( f, G) \ :

n+1

m=1

|F$m (z)| 2

m +
1�2

for all natural numbers n. This shows that

| f (z)&Sn ( f, z)| 2�2 | f (z)&Pn*(z)| 2+
2

?(1&k2)
E 2

n ( f, G) :
n+1

m=1

|F$m (z)| 2

m
.

Therefore, by integrating both sides over G and considering Lemma 2.1 we
get

& f &Sn ( f, } )&2
A2(G)�2E 2

n ( f, G)+
2

?(1&k2)
E 2

n ( f, G) :
n+1

m=1

&F$m&2
A2(G)

m

�\2+
2(n+1)
1&k2 + E 2

n ( f, G)

�
6n

1&k2 E 2
n ( f, G),

i.e., & f &Sn ( f, } )&A2(G)�- 6n�(1&k2) En ( f, G) for all natural numbers n.

Corollary 3.1. If f # A2(U), then its generalized Faber series converges
to f in the norm & &A2(U) .

Proof. This is obvious from the preceding theorem and Theorem 11
and Theorem 1 in [7] and [2], respectively.
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